Hackers Remotely Kill a Jeep on the Highway—With Me in It I was driving 70 mph on the edge of downtown St. Louis when the exploit began to take hold. # Hacking Kia: Remotely Controlling Cars With Just a License Plate Fri Sep 20 2024 New Bluetooth hack can unlock your Tesla—and all kinds of other devices All it takes to hijack Bluetooth-secured devices is custom code and \$100 in hardware. Web Hackers vs. The Auto Industry: Critical Vulnerabilities in Ferrari, BMW, Rolls Royce, Porsche, and More Tue Jan 03 2023 2021-05-12 Cars are complex - Typically 100-200M LOC¹ - Includes QNX, Android Automotive OS, AGL with libraries for interfaces (Bluetooth, WiFi, GPS, Cellular, UWB) # WITH GREAT POWER # COMES GREAT RESPONSIBILITY makeameme.org ## Cars are complex ... and so is their attack surface #### Cars are complex ... and so is their attack surface #### Focus #### Remote Web, UWB, Bluetooth, WiFi, Cellular, GPS, ... #### Implementation-specific - loT hacking* (components) - Reverse Engineering - DAST/SAST Pros: Higher Impact* (RCE) Cons: Lower exposure* (Firmware specific) #### Local • USB, OBD-II, pivoting attacks from 1 component to another, ... #### **Protocol-specific** - Specification review - Studying protocol attacks - Reengineering known vulnerabilities Pros: Higher exposure (standard functionality) Cons: Medium-High impact (depends on the protocol) #### Focus #### Remote Web, UWB, Bluetooth, WiFi, Cellular, GPS, ... #### Implementation-specific - loT hacking* (components) - Reverse Engineering - DAST/SAST Pros: Higher Impact* (RCE) Cons: Lower exposure* (Firmware specific) #### Local • USB, OBD-II, pivoting attacks from 1 component to another, ... **Protocol-specific** - Specification review - Studying protocol attacks - Reengineering known vulnerabilities Pros: Medium-High impact (depends on Protocol) Cons: Higher exposure (standard functionality # Why Examine Bluetooth in Cars? - 1 billion cars have Bluetooth (typically BT Classic) 1,2 - 87% of new cars have BT² - Rich functionality - Can't procure your car without it - Noone has done it before ^{1. &}lt;a href="https://www.thedrive.com/guides-and-gear/how-many-cars-are-there-in-the-world">https://www.thedrive.com/guides-and-gear/how-many-cars-are-there-in-the-world https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8588186/ #### whoami - Vladyslav - Bug Bounty hunter known as yso, schwytz and en_de_ru_cn - Focus areas include: - Penetration testing & security research from web to E-Voting and OS - Development/SE of tools & systems - OSCP, BSCP .. CRTO & CRTO2 in progress - Spoke at some confs like DEFCON, Area41 and others. - Bluetooth project was done with Cyber Defence Campus, ETH Zurich and afterwards on my own # Bluetooth and Vulnerability Testing Framework # II - Bluetooth - Shared responsibility - Short-range wireless comm. Standard - Complexity due to shared responsibility - errors - misunderstandings - We are going to talk only about Bluetooth Classic - Transport + Functionality #### Bluetooth Classic or BLE in Vehicles - In cars: - BLE supported only in a few cars Honda HFT, Toyota Corolla 2023, Tesla Model Y, Audi E-tron, ... - BLE is generally supported on a Controller level but not on Host - In future, this might change - Bluetooth 6.0 new secure positioning* features (think keys) - Other use-cases or supported by OS by default. - Bluetooth Classic is dominant in cars, e.g. there are specific profiles that are in the "Car Kit". - It's easier to develop custom profiles for BLE than for BC (Bluetooth Classic - MAYBE ADD a bit more differentiation? #### II - Bluetooth Profiles - HFP - making calls - A2DP - Transferring audio - PBAP - extracting contacts - MAP - extracting messages (Car kit profile) - SAP - full access to the SIM card (Car kit profile) - Used in older cars - FTP - file transfer - HID - Human interface devices such as Keyboard, pointers, etc. - Object Push, SPP and others # II - Bluetooth Security Model - Capabilities DisplayYesNo KeyboardOnly DisplayOnly NoInputNoOutput - "Everything or Nothing" - Pairing modes - Legacy pairing - No SSP and SC - Just works - NiNo MitM - Passkey Entry - Method Confusion MitM - Numeric Comparison - The only secure option* RESPONDER - "Everything or Nothing" - Pairing modes - Legacy pairing - No SSP and SC - Just works - NiNo MitM - Passkey Entry - Method Confusion MitM - Numeric Comparison - The only secure option* - "Everything or Nothing" - Pairing modes - Legacy pairing - No SSP and SC - Just works - NiNo MitM - Passkey Entry - Method Confusion MitM - Numeric Comparison - The only secure option* - "Everything or Nothing" - Pairing modes - Legacy pairing - No SSP and SC - Just works - NiNo MitM - Passkey Entry - Method Confusion MitM - Numeric Comparison - The only secure option* • Once established there is no difference for profiles whether the secure pairing mode was used or not #### II - Previous Research - We found more than 108 attacks on Bluetooth standards (March 2024) - 647 CVEs related to Bluetooth devices¹ as of 2022 Source: SANS a Survey of Bluetooth Vulnerabilities Trends ### III - BlueToolkit Why - Bluetooth testing comes with hurdles such as: - No common database of vulnerabilities - No vulnerability testing framework - Finding and reconstructing PoCs from minimal public information including specification. - Some PoCs are based on older hardware. - Opportunities: - Some manufacturers might not do regression testing because of the lack of PoC or indicators. - Remaining issues: - Unpredictable issues with Bluetooth stack (Host or Controller) - DoS attacks might be very powerful especially with vehicles. - Generally impossible to fix some of the vulnerabilities without a recall (found in a specification) # III - BlueToolkit Why # YEAR IN REVIEW Telemetry trends Talos #### Top targeted vulnerabilities In 2023, cyber threat actors exploited older software vulnerabilities in common applications. In many cases, the vulnerabilities were more than 10 years old, consistent with CISA's finding that adversaries have targeted old security flaws more than newly disclosed ones in recent years. In fact, four of the top five mosttargeted vulnerabilities we observed were also cited by CISA as being frequently exploited in prior years, further highlighting this point. This underscores the need for entities to regularly install software updates, as many of these systems were likely unpatched given the age of the targeted vulnerabilities. The top targeted vulnerabilities are found in common applications, like Microsoft Office. This finding is also substantiated by CISA, which noted that actors in 2022 prioritize CVEs that are more prevalent in their targets' networks. Adversaries likely prioritize targeting widespread vulnerabilities because the exploits developed for such CVEs can have long-term use and high impact. Lastly, most of the vulnerabilities on our list would cause substantial impact if exploited, with six receiving a maximum vulnerability risk score of 100 from Cisco Kenna and seven receiving the highest "critical" score from the Common Vulnerability Scoring System (CVSS). Most of the CVEs are also listed in CISA's Known Exploited Vulnerabilities catalog, which is meant to inform users on the security flaws for which they should prioritize remediation. The high frequency of targeting attempts against these CVEs, paired with their severity, underscores the risk to unpatched systems. Source: Cisco Secure Endpoint CISA sources: Top Routinely Exploited Vulnerabilities, 2022 and 2016-2019. | Ranking | CVE | Vendor | Product | CISA findings | CISA KEV catalog | Kenna/CVSS | |---------|----------------|--------------------------|------------------------------|---|------------------|------------| | 1 | CVE-2017-0199 | Microsoft | Office and WordPad | Routinely exploited in 2022 | 0 | 100/9.3 | | 2 | CVE-2017-11882 | Microsoft | Exchange server | Routinely exploited in 2022 | • | 100/9.3+ | | 3 | CVE-2020-1472 | Microsoft | Netlogon | Routinely exploited in 2022 | • | 100/9.3 | | 4 | CVE-2012-1461 | Gzip file parser utility | Multiple antivirus products | | 8 | 58/4.3 | | 5 | CVE-2012-0158 | Microsoft | Office | Commonly exploited by
state-sponsored actors from
China, Iran, North Korea,
and Russia (2016-2019) | • | 100/9.3 | | 6 | CVE-2010-1807 | Apple | Safari | | 8 | 84/9.3 | | 7 | CVE-2021-1675 | Microsoft | Windows (print spooler) | | • | 100/9.3 | | 8 | CVE-2015-1701 | Microsoft | Windows (kernel-mode driver) | | 0 | 72/7.2 | | 9 | CVE-2012-0507 | Oracle | Java SE | | Ø | 100/10 | | 10 | CVE-2015-2426 | Microsoft | Windows (font driver) | | • | 100/9.3 | © 2023 Cisco and/or its affiliates. All rights reserved. | talosintelligence.com # Cars lag in adoption of the newest BT standards ## IV - Cars lag in adoption of the newest BT standards #### BlueToolkit - what - Extensible Bluetooth Classic Vulnerability testing framework that helps uncover old and new vulnerabilities in Bluetooth-enabled devices. - Think nuclei for Bluetooth - Useful for security and quality assurance. Could be used in procurement. - Automates and scales security research - At least 65 vulnerabilities discovered https://github.com/sgxgsx/BlueToolkit # NE DO THIS NOT BECAUSE IT IS FASY, WE THOUGHT IT WOULD BE EASY #### III - BlueToolkit - How # IV - Setting up - Ubuntu-based laptop or VM - USB cables C/Micro USB - ESP-WROVER-KIT-VE -> \$50 - Nexus 5 phone -> CYW20735 -> \$50 - Ubertooth and USRP B210 (might be skipped) - Additional hardware #### Discovering MAC addresses - For our own tests - Run bluetoothctl - Ensure that IVI is waiting for pairing - In case of the simulated* attack: - The 1st technique will work for some cars (always pairable and discoverable) - More costly solution is to use Blue's Clues¹² attack (needs Ubertooth and USRP B210) but will discover full MAC addresses even if the device is in non-discoverable mode. 2023 IEEE Symposium on Security and Privacy (SP) #### Blue's Clues: Practical Discovery of Non-Discoverable Bluetooth Devices Tyler Tucker, Hunter Searle, Kevin Butler, Patrick Traynor Florida Institute for Cybersecurity Research (FICS) {tylertucker1, huntersearle, butler, traynor}@ufl.edu #### Recon - Collect more general information on the target - Device name - manufacturer - LMP features (supported features) - SDP information (services) - With some devices you need to pair first to get SDP info - Tesla Model Y ~(version) Bluetooth stack crashes on this command -_- ``` sudo -E env PATH=$PATH bluekit -t AA:BB:CC:DD:EE:FF -r ``` #### Recon ``` Service Record 0x0000: ServiceRecordHandle (uint32) 0x00010003 0x0001: ServiceClassIDList (sequence) 0x110b: AudioSink 0x0004: ProtocolDescriptorList (sequence) 0x0100: L2CAP PSM: 0x0019 0x0019: AVDTP v1.3 0x0005: BrowseGroupList (sequence) 0x1002: PublicBrowseRoot 0x0009: BluetoothProfileDescriptorList (sequence) 0x110d: AdvancedAudioDistribution v1.3 0x0100: ServiceName (guess) (text) SWN05LGHA2DP013 0x0311: unknown <uint16 value="0x0001" /> Service Record 0x00000: ServiceRecordHandle (uint32) 0x00010004 0x0001: ServiceClassIDList (sequence) 0x112e: Phonebook Access - PCE 0x0005: BrowseGroupList (sequence) 0x1002: PublicBrowseRoot 0x00009: BluetoothProfileDescriptorList (sequence) 0x1130: Phonebook Access v1.2 0x0100: ServiceName (guess) (text) PBAP PCE ``` ``` Requesting information ... BD Address: AA:BB:CC:DD:EE:FF OUI Company: LG Innotek (CC-88-26) Device Name: Kona LMP Version: 5.0 (0x9) LMP Subversion: 0x420e Manufacturer: Broadcom Corporation (15) ``` LE Supported (Controller): True Simultaneous LE and BR/EDR to Same Device Capable (Controller): True LE Supported (Host): False Simultaneous LE and BR/EDR to Same Device Capable (Host): False ### Sniffing - Difficult and costly to sniff Bluetooth Classic - Impractical due to encryption deployment since 2013 - If you want to dump on LMP level - use - What you actually might need: - is to dump traffic between you and your test device (only on HCl level) - You can produce a log on a target device too # Testing for known vulnerabilities or regression testing - BlueToolkit is your helper! - 44 tests in total (6 are manual) - Simply run all available to you exploits with the following command. - Observe the output and look at the IVI source /usr/share/BlueToolkit/.venv/bin/activate sudo -E env PATH=\$PATH bluekit -t AA:BB:CC:DD:EE:FF some@some:/usr/share/Bluetoolkit\$ source /usr/share/Bluetoolkit/venv/bin/activate (.venv) some@some:/usr/share/Bluetoolkit\$ sudo -E env PATH=\$PATH bluekit -l | Index Exploit | + | | H | + | + | + | + | |--|-------|--|--------|----------|-----------|------------|--------------| | Display | Index | Exploit | Туре | Hardware | Available | BT min | BT max | | Display | 1 1 | bleedingtooth badchoice cve 2020 12352 | DoS | default | | +
 1.0 | +
l 5.4 l | | | 2 | | DoS | | | 2.0 | 5.2 | | bleedingtooth_badvibes_cve_2020_24490 | | | DoS | default | V | 5.0 | 5.2 | | 5 blueborne_CVE_2017_1000251 | 4 | | DoS | | _ | | | | 6 | 5 | | DoS | default | V | 2.0 | 5.2 | | 7 | | | PoC | default | V | | | | 8 custom_nino_check PoC default W 1.0 5.4 9 custom_legacy_pairing_second_check PoC default W 1.0 5.4 10 reconnaissance_possible_BLUR PoC default W 1.0 5.4 11 reconnaissance_SC_supported PoC default W 1.0 5.4 12 custom_method_confusion_check PoC default W 2.1 5.4 13 truncated_lmp_accepted DoS esp32 X 2.0 5.4 14 repeated_host_connection DoS esp32 X 2.0 5.4 14 repeated_host_connection DoS esp32 X 2.0 5.4 15 sdp_oversized_element_size DoS esp32 X 2.0 5.4 16 duplicated_encapsulated_payload DoS esp32 X 2.0 5.4 17 wrong_encapsulated_payload DoS esp32 X 2.0 <td>7</td> <td></td> <td>PoC</td> <td></td> <td>V</td> <td></td> <td>5.2</td> | 7 | | PoC | | V | | 5.2 | | 9 | | | PoC | | | | | | 10 | 9 | custom legacy pairing second check | PoC | default | V | 1.0 | 5.4 i | | 11 | 10 | reconnaissance possible BLUR | PoC | default | V | 1.0 | 5.4 i | | 12 | 11 | | PoC | default | V | 1.0 | 5.4 | | 13 | 12 | | PoC | default | ✓ | 2.1 | 5.4 | | 14 | 13 | truncated_lmp_accepted | DoS | esp32 | × | 2.0 | 5.4 | | 15 | 14 | repeated_host_connection | DoS | | × | 2.0 | 5.4 | | 16 | 15 | sdp_oversized_element_size | DoS | esp32 | × | 2.0 | 5.4 | | 17 wrong_encapsulated_payload | 16 | duplicated_encapsulated_payload | DoS | esp32 | × | 2.0 | 5.4 | | 18 | 17 | wrong_encapsulated_payload | DoS | esp32 | × | 2.0 | 5.4 | | 19 | 18 | feature_req_ping_pong | DoS | | X | 2.0 | 5.4 | | 20 | 19 | sdp_unkown_element_type | DoS | esp32 | × | 2.0 | 5.4 | | 21 | 20 | <pre>lmp_auto_rate_overflow</pre> | DoS | | × | 2.0 | 5.4 | | 22 | | <pre>lmp_overflow_2dh1</pre> | DoS | esp32 | × | 2.0 | 5.4 | | 23 invalid_timing_accuracy | 22 | truncated_sco_link_request | DoS | esp32 | × | 2.0 | 5.4 | | 24 | | invalid_timing_accuracy | DoS | esp32 | × | 2.0 | 5.4 | | 25 | 24 | invalid_max_slot | DoS | | × | 2.0 | 5.4 | | 26 | | | DoS | esp32 | × | 2.0 | 5.4 | | 27 duplicated_iocap | | paging_scan_disable | DoS | esp32 | × | 2.0 | 5.4 | | 28 | | duplicated_iocap | DoS | esp32 | × | 2.0 | 5.4 | | 29 invalid_feature_page_execution | | | | | × | | | | 30 | | , , | DoS | | × | 2.0 | | | 31 feature_response_flooding | | | | | × | | | | 32 | | _ | DoS | esp32 | × | 2.0 | | | 33 invalid_setup_complete | | | DoS | esp32 | × | | | | 34 braktooth_knob PoC esp32 X 2.0 5.4 35 internalblue_CVE_2018_19860_0a_00 DoS nexus5 X 2.0 5.2 36 internalblue_CVE_2018_19860_20_17 DoS nexus5 X 2.0 5.2 37 internalblue_CVE_2018_19860_16_0b DoS nexus5 X 2.0 5.2 38 internalblue_CVE_2018_5383_Invalid_second Manual nexus5 X 2.0 5.2 39 internalblue_knob PoC nexus5 X 2.0 5.2 | | | DoS | esp32 | × | 2.0 | 5.4 | | 35 internalblue_CVE_2018_19860_0a_00 DoS nexus5 X 2.0 5.2 36 internalblue_CVE_2018_19860_20_17 DoS nexus5 X 2.0 5.2 37 internalblue_CVE_2018_19860_16_0b DoS nexus5 X 2.0 5.2 38 internalblue_CVE_2018_5383_Invalid_second Manual nexus5 X 2.0 5.2 39 internalblue_knob PoC nexus5 X 2.0 5.2 | | _ | PoC | esp32 | × | 2.0 | | | 36 internalblue_CVE_2018_19860_20_17 DoS nexus5 X 2.0 5.2 37 internalblue_CVE_2018_19860_16_0b DoS nexus5 X 2.0 5.2 38 internalblue_CVE_2018_5383_Invalid_second Manual nexus5 X 2.0 5.2 39 internalblue knob PoC nexus5 X 2.0 5.2 | | | DoS | nexus5 | × | | | | 37 internalblue_CVE_2018_19860_16_0b | | | , | nexus5 | × | | | | 38 internalblue_CVE_2018_5383_Invalid_second Manual nexus5 2.0 5.2
 39 internalblue knob PoC nexus5 | | | DoS | nexus5 | × | 2.0 | 5.2 | | 39 internalblue knob PoC nexus5 🗶 2.0 5.2 | | | Manual | nexus5 | × | | | | | | internalblue_knob | PoC | nexus5 | × | 2.0 | 5.2 | • 2 options: accept or decline (try both) commands: continue, backup: - If you see smth like this either there is a deadlock or device DoS itself. - You can try to "continue" and check the availability and pairability again. ``` Device is down The target device is not available. Try restoring the connectivity. After that enter 1 of the following ``` - Once done: - Add hardware - ESP-WROVER-KIT-VE - DoS attacks - Nexus 5 phone - Internalblue attacks - Other hardware could be available once added #### Testing for known vulnerabilities ESP-WROVER-KIT-VE - Enables us to run 22 tests - You need to setup it on the first run (automated³ for you) - ls -la /dev/tty* chmod +x /usr/share/Btoolkit/installation/braktooth_additional_install.sh /usr/share/Btoolkit/installation/braktooth_additional_install.sh - Not all tests are described as ones leading to vulnerabilities as per Braktooth^{1,2} authors - You don't need to pair on your target device while testing - Enables us to run 5 tests - Setup is a bit more challenging - Root the phone and follow Internalblue instructions - Install helper Android tool adb devices chmod +x /usr/share/Btoolkit/installation/bluetoothassistant_additional_install.sh /usr/share/Btoolkit/installation/bluetoothassistant_additional_install.sh #### Testing for known vulnerabilities - report - You might need to take notes during the tests, just in case the tool reports false positives (DoS) - In the end it's a PoC sudo -E env PATH=\$PATH bluekit -t 8C:6A:3B:89:F3:16 -re ``` (.venv) some@some:/usr/share/Bluetoolkit$ sudo -E env PATH=$PATH bluekit -t AA:BB:CC:DD:EE:FF -re | Data | 1 | au_rand_flooding | Not vulnerable | | feature_response_flooding | Not vulnerable | braktooth_knob | | Not vulnerable | not vulnerable feature_req_ping_pong | Not vulnerable | reconnaissance SC supported | Vulnerable | | No Secure Connections supported reconnaissance_possible_BLUR | Not vulnerable | No LE supported, Cross transport attacks are not going to work | reconnaissance SSP supported | Vulnerable | | SSP supported, secure cryptography is used, there might be a | bleedingtooth badkarma cve 2020 12351 | Not vulnerable | | bleedingtooth_badchoice_cve_2020_12352 | Not vulnerable | (| bleedingtooth badvibes cve 2020 24490 | Not vulnerable | (| paging_scan_disable | Not vulnerable | | wrong_encapsulated_payload | Not vulnerable | @ duplicated_iocap | Not vulnerable | (| Not vulnerable | @ lmp_overflow_dm1 | Not vulnerable | | Not vulnerable | | lmp auto rate overflow sdp_oversized_element_size | Not vulnerable | 4 | lmp invalid transport | Not vulnerable | 4 lmp_max_slot_overflow | Not vulnerable | (repeated host connection | Not vulnerable | | Not vulnerable | I sdp unkown element type custom_method_confusion_check | Not vulnerable | Device uses DisplayYesNo | Not vulnerable | Legacy pairing is not enabled | custom legacy pairing second check | Vulnerable | vulnerable | internalblue_CVE_2018_19860_16_0b | Not vulnerable | (| internalblue_CVE_2018_19860_20_17 | Not vulnerable | 0 | internal blue CVE 2018 5383 Invalid second | Not vulnerable | Was not able to establish a connection | Not vulnerable | not vulnerable | internalblue_CVE_2018_19860_0a_00 | Not vulnerable | (| blueborne_CVE_2017_1000250 | Not vulnerable | @ | truncated_sco_link_request | Not vulnerable | | truncated_lmp_accepted | Not vulnerable | blueborne_CVE_2017_0785 | Not vulnerable | Target device OS is not Android | blueborne_CVE_2017_1000251 | Not vulnerable | @ | Not vulnerable | @ I invalid feature page execution | Not vulnerable | @ | Not vulnerable | 4 ``` #### Looking for design- and state-based vulnerabilities - MitM or BAC issues - Idea: - MitM: Look for vulnerabilities that allow you to connect to a target device without a confirmation or with a predictable confirmation - BAC: Look for vulnerabilities that assume you are authorized to get a specific functionality on a target device #### Looking for design- and state-based vulnerabilities: MitM - Change your device type - Change your device capabilities - Simply look for a violation of a specification #### Looking for design- and state-based vulnerabilities: MitM - + Force legacy pairing (4 digit static number) - Doesn't always work. Probably there is a race condition that allows us to turn off SC and SSP - Should work on older devices while true; do sudo btmgmt ssp off; sudo btmgmt sc off; done ### Looking for design- and state-based vulnerabilities: MitM Example Audi Pairing in progress... Please accept the request 039065 from your device. #### Looking for design- and state-based vulnerabilities: BAC - Change your device type as in a previous slide - Change your MAC address sudo bdaddr -i hci0 FF:EE:DD:CC:BB:AA sudo hciconfig hci0 resetw sudo systemctl restart bluetooth.service #### Looking for design- and state-based vulnerabilities: BAC #### Troubleshooting problems and some tips BlueZ doesn't see a MAC address or (loses it) ``` while true; do sudo hcitool info AA:BB:CC:DD:EE:FF; done ``` - Making sure that we don't have an established pairing to a target device (delete an LTK/LinkKey) - Or you want to extract an LTK ``` some@some: sudo su root@some: cd /var/lib/bluetooth/[YOUR MAC ADDR]/[TARGET MAC ADDR] root@some: cd /var/lib/bluetooth/AA:BB:CC:DD:EE:FF/FF:EE:DD:CC:BB:AA root@some: ls attributes info root@some: cat info [General] Name=Polestar PS2 Class=0x260408 SupportedTechnologies=BR/EDR; Trusted=false Blocked=false Services=UUIDS;....; [DeviceID] Source=1 Vendor=200 Product=4000 Version=5000 [LinkKey] Key=AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA Type=5 PINLength=0 ``` #### **Testing Profiles** - All cars have: - A2DP, AVCTP, AVDTP - HFP - PBAP (client) - MAP (Notification service) - Older vehicles also have - SAP - Object push profile - FTP - Apart from implementation we can test how these profiles save data and whether we can retrieve it without knowing LTK. Think about BAC - FTP and Object push profile are of high interest for older vehicles - might get you access to a file system or RCE #### Redeveloping CVEs - Why - If a vulnerability has been found in one stack it might come up in another one. (BlueZ of particular interest) - Where to find CVEs: - https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=bluetooth - https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=bluez - Where to find new attacks on Bluetooth itself: - Papers & Conf: ACM, IEEE SP, Blackhat, usenix, NDSS, Google scholar - Github, Google, Bing, ... - https://darkmentor.com/bt.html Great resource and timeline - https://github.com/sgxgsx/BlueToolkit Description also has a table with other BLE and BT vulnerabilities - Add your 1-days to BlueToolkit so that others can test them too! - Reach out to me and I can help writing a YAML profile #### Extra mile - CTKD (Cross transport key derivation) - you may impact Bluetooth Classic via an attack on BLE e.g. get a LTK for BLE connection and then rewrite link key for Bluetooth Classic one to establish MitM - https://github.com/francozappa/blur - Fuzzing - https://github.com/Matheus-Garbelini/braktooth esp32 bluetooth classic attacks - Can use it similar to Internalblue for your attacks. - Documentation & Specification - https://www.bluetooth.com/specifications/specs/ - It's not that big and you don't need to read 3000+ pages. Get the basics and then review what you are interested in - Same approach as in Code review (instead of `grep` we have Ctrl+F) #### Extra mile - Implementation-specific - loT hacking - https://www.youtube.com/watch?app=desktop&v=YPcOwKtRuDQ - Reverse Engineering and Binary exploitation (ideally) - from hardcoded keys to buffer and heap overflows #### DoS = MitM 1. Selective Jamming 2. Pre-commit with different MAC addr. Or exploit other MitM vulnerabilities 3. DoS and advertise as a car Link key is renegotiated after 2-3 failed attempts. #### MitM = High Severity attack The Android security team has conducted an initial severity assessment on this report. Based on our published severity assessment matrix (1) it was rated as High severity and High quality. #### MitM = High Severity attack The Android security team has conducted an initial severity assessment on this report. Based on our published severity assessment matrix (1) it was rated as High severity and High quality. #### MitM = High Severity Attack - Example - Exploits typical to cars functionality - Adversaries may spoof the MAC address of an already connected device or simply connect to a device and get access to SMS messages - Hijack account - Leak OTPs, etc. - Might remain after it will be hardened in Android, Apple ???* not going to fix a 1-click attack - Why? if an adversary controls IVI they may already have access to MAP - If they control Bluetooth link (MitM) they may try to get access to MAP - For more information: - https://www.youtube.com/watch?v=JL7a_oLoXHY ## COMMON VULNERABILITY SCORING SYSTEM #### Physical attacks matter in vehicle security - Is hijacking a car a 6.4 or 6.8 medium vulnerability? - Be careful with CVSS when evaluating vulns in car context. #### Going beyond - BlueToolkit and techniques shown can of course be used for any Bluetooth (Classic) system - We also tried it out on CYD avionics lab with real aircraft hardware | Index | Exploit | Result | Data | ļ | |-------|------------------------------|----------------|--|---| | 1 |
 au_rand_flooding | Not vulnerable | | ï | | 2 | feature_response_flooding | Not vulnerable | 0 | î | | j 3 | braktooth_knob | Vulnerable | vulnerable | î | | 4 | feature_req_ping_pong | Not vulnerable | 3 | î | | j 5 | reconnaissance_SC_supported | Vulnerable | No Secure Connections supported | î | | 6 | reconnaissance_possible_BLUR | Not vulnerable | No LE supported, Cross transport attacks are not going to work | î | | j 7 | reconnaissance_SSP_supported | Vulnerable | SSP supported, weak cryptography is used | İ | #### Conclusion - Doing security research into cars is not that hard - Use your existing specialization or learn a new one - Report to - Bug Bounty Programs, Pwn2Own, etc. - Directly to a manufacturer - National CERTs - Why - Harvest CVEs - Get rewards Q&A # Scan to discover more https://github.com/sgxgsx Contact: ysoschwytz@protonmail.com Design: ux.uidesigns@protonmail.com